A rubber ball is attached to a 1.44m string and spin in a horizontal circle. The tension in the string is 2.91 N. It takes 0.644s for the ball yo complete one revolution. What is the mass in kg of the ball?

We are given that a mass is attached to a string and is spun is in a horizontal circle, this means that the free body diagram of the problem is the following:
We will add the forces in the vertical direction:
[tex]T_y-mg=0[/tex]The forces add up to zero since there is no acceleration in the vertical direction. Therefore, we can add "mg" to both sides:
[tex]T_y=mg[/tex]Now, The vertical component of the tension can be put in terms of the total tension using the following right triangle:
Therefore, we use the trigonometric function sine:
[tex]\cos x=\frac{T_y}{T}[/tex]Multiplying both sides by "T"
[tex]T\cos x=T_y[/tex]Substituting in the sum of vertical forces:
[tex]T\cos x=mg[/tex]Now, Since the horizontal component of the tension is equivalent to the centripetal force, we have that:
[tex]T_x=ma_r[/tex]Where:
[tex]\begin{gathered} r=\text{ radius of the circle} \\ a_r=\text{ radial acceleration} \end{gathered}[/tex]We can use the trigonometric function cosine to determine the horizontal component of the tension:
[tex]\sin x=\frac{T_x}{T}[/tex]Multiplying both sides by "T":
[tex]T\sin x=T_x[/tex]Substituting we get:
[tex]T\sin x=ma_r[/tex]Now, we divide both equations:
[tex]\frac{T\sin x}{T\cos x}=\frac{ma_r}{mg}[/tex]Simplifying we get;
[tex]\tan x=\frac{a_r}{g}[/tex]Now, we multiply both sides by "g":
[tex]g\tan x=a_r[/tex]Now, in any circular motion, the period "P" is given by:
[tex]P=\frac{2\pi}{\omega}[/tex]Where:
[tex]\begin{gathered} r=\text{ radius} \\ v=\text{ tangential velocity} \end{gathered}[/tex]Also, the acceleration is given by:
[tex]a_r=\frac{4\pi^2r}{P^2}[/tex]Substituting the expression for the acceleration we determined before we get:
[tex]g\tan x=\frac{4\pi^2r}{P^2}[/tex]Substituting the expression for the period:
[tex]g\tan x=\frac{4\pi^2r}{(\frac{2\pi}{\omega})^2}[/tex]Solving the square:
[tex]g\tan x=\frac{4\pi^2r}{\frac{4\pi^2}{\omega^2}}[/tex]Solving the fraction:
[tex]g\tan x=\frac{4\pi^2r\omega^2}{4\pi^2}[/tex]Simplifying:
[tex]g\tan x=r\omega^2[/tex]Now, we can put the radius in terms of the length of the spring using the following triangle:
using the function sine we get:
[tex]L\sin x=r[/tex]Substituting in the previous equation we get:
[tex]g\tan x=L\sin x\omega^2[/tex]Now, we decompose the tangent:
[tex]\frac{g\sin x}{\cos x}=L\sin x\omega^2[/tex]Simplifying:
[tex]\frac{g}{\cos x}=L\omega^2[/tex]Now, we invert both sides:
[tex]\frac{\cos x}{g}=\frac{1}{L\omega^2}[/tex]Multiplying both sides by "g" we get:
[tex]\cos x=\frac{g}{L\omega^2}[/tex]The angular velocity is the angle divided by time, since it takes 0.644 s to complete one revolution this means that :
[tex]\omega=\frac{2\pi}{0.644}[/tex]substituting the values:
[tex]\cos x=\frac{9.8}{1.44(\frac{2\pi}{0.644})^2}[/tex]Solving the operations:
[tex]\cos x=0.071[/tex]Now, going back to the sum of forces in the vertical direction:
[tex]T\cos x=mg[/tex]Dividing both sides by "g":
[tex]\frac{T\cos x}{g}=m[/tex]Substituting the values:
[tex]\frac{(2.91)(0.071)}{9.8}=m[/tex]Solving the operations:
[tex]0.021=m[/tex]Therefore, the mass of the ball is 0.021 kg.