Prouvez par récurrence que quel que soit n EN\{0}, on a
1/1.2 + 1/2.3 + …. + 1/ n.(n+1) v= 1- 1/n+1


Answer :

The left side is equivalent to

[tex]\displaystyle \sum_{k=1}^n \frac1{k(k+1)}[/tex]

When n = 1, we have on the left side

[tex]\displaystyle \sum_{k=1}^1 \frac1{k(k+1)} = \frac1{1\cdot2} = \frac12[/tex]

and on the right side,

[tex]1 - \dfrac1{1+1} = 1 - \dfrac12 = \dfrac12[/tex]

so this case holds.

Assume the equality holds for n = N, so that

[tex]\displaystyle \sum_{k=1}^N \frac1{k(k+1)} =1 - \frac1{N+1}[/tex]

We want to use this to establish equality for n = N + 1, so that

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = 1 - \frac1{N+2}[/tex]

We have

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = \sum_{k=1}^N \frac1{k(k+1)} + \frac1{(N+1)(N+2)}[/tex]

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = 1 - \frac1{N+1} + \frac1{(N+1)(N+2)}[/tex]

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = 1 - \frac{N+2}{(N+1)(N+2)} + \frac1{(N+1)(N+2)}[/tex]

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = 1 - \frac{N+1}{(N+1)(N+2)}[/tex]

[tex]\displaystyle \sum_{k=1}^{N+1} \frac1{k(k+1)} = 1 - \frac1{N+2}[/tex]

and this proves the claim.