Answer :
Answer:
i) The pressure acting on the base of B will be half the pressure acting on the base of A
ii) The pressure acting on the base of B will be the same as the pressure acting on the base of A
iii) The pressure on the base of drum A will be slightly less than the pressure on the base of drum B
Explanation:
The pressure acting on the base of the drum, P = h·ρ·g
Where;
h = The level of the liquid in the drum
[tex]h_{max}[/tex] = The height of the drums
ρ = The density of the liquid in the drum
g = The acceleration due to gravity ≈ 9.81 m/s²
i) If A is completely filled, we have [tex]h_A[/tex] = [tex]h_{max}[/tex]
Therefore, [tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{liquid}[/tex]×g
If B is half filled, we have, [tex]h_B[/tex] = (1/2)·[tex]h_{max}[/tex]
[tex]P_B[/tex] = (1/2) × [tex]h_{max}[/tex]×[tex]\rho_{liquid}[/tex]×g
Therefore, [tex]P_B[/tex] = (1/2) × [tex]P_A[/tex]
The pressure acting on the base of B will be half the pressure acting on the base of A
ii) If both A and B are each filled with water (the same liquid), then the pressure on their bases will be [tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{water}[/tex]×g = [tex]P_B[/tex], the same, given that the acceleration due to gravity, g, is constant and the same in Nepal and India
iii) If A is filled with water, and B is filled with salty water, we have that, the density of salty water is slightly higher than water, therefore, we get;
[tex]P_A[/tex] = [tex]h_{max}[/tex]×[tex]\rho_{water}[/tex]×g < [tex]P_B[/tex] =
The pressure on the base of drum A will be less than the pressure on the base of drum B.