Coherent light with wavelength 597 nm passes through two very narrow slits, and theinterference pattern is observed on a screen a distance of 3.00{\rm m} from the slits. The first-order bright fringe is adistance of 4.84 {\rm mm} from the center of the central bright fringe.
For what wavelength of light will thefirst-order dark fringe be observed at this same point on thescreen?


Answer :

Answer:

The required wavelength is 1.19 μm

Explanation:

In the double-slit study, the formula below determines the position of light fringes [tex]y_m[/tex] on-screen.

[tex]y_m = \dfrac{m \lambda D}{d}[/tex]

where;

m = fringe order

d = slit separation

λ = wavelength

D = distance between screen to the source

For the first bright fringe, m = 1, and we make (d) the subject, we have:

[tex]d = \dfrac{(1) \lambda D}{y_1}[/tex]

[tex]d = \dfrac{ \lambda D}{y_1}[/tex]

replacing the value from the given question, we get:

[tex]d = \dfrac{ (597 \ nm )\times (3.00 \ m)}{4.84 \ mm} \\ \\ d = \dfrac{ (597 \ nm \times (\dfrac{1 \ m}{10^9\ nm}) )\times (3.00 \ m)}{4.84 \ mm(\dfrac{1 \ m}{1000 \ mm })} \\ \\ d = 3.7 \times 10^{-4} \ m[/tex]

In the double-slit study, the formula which illustrates the position of dark fringes [tex]y_m[/tex] on-screen can be illustrated as:

[tex]y_m = (m+\dfrac{1}{2}) \dfrac{\lambda D}{d}[/tex]

The value of m in the dark fringe first order = 0

[tex]y_0 = (0+\dfrac{1}{2}) \dfrac{\lambda D}{d}[/tex]

[tex]y_0 = (\dfrac{1}{2}) \dfrac{\lambda D}{d}[/tex]

making λ the subject of the formula, we have:

[tex]\lambda = \dfrac{2y_o d}{D} \\ \\ \lambda = \dfrac{2(4.84 \ mm) \times \dfrac{1 \ m}{1000 \ mm} (3.7 \times 10^{-4} \ m) }{3.00 \ m}[/tex]

[tex]\lambda = 1.19 \times 10^{-6} \ m ( \dfrac{10^6 \mu m }{1\ m}) \\ \\ \lambda = 1.19 \mu m[/tex]