Answer :
Answer:
(a)
[tex]\begin{array}{cccc}{{y} & {0} & {1} & {2} & {P(y|1)} & {0.2353} & {0.5882} & {0.1765} \ \end{array}[/tex]
(b)
[tex]\begin{array}{cccc}{{y} & {0} & {1} & {2} & {P(y|2)} & {0.0962} & {0.2692} & {0.6346} \ \end{array}[/tex]
(c)
[tex]P(Y \le 1 | X = 2) = 0.3654[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{cccc}{P(x,y)} & {y} & { } & { } &{x } & {0} & {1} & {2} & {0} & {0.10} & {0.03} & {0.01} & {1} & {0.08} & {0.20} & {0.06} & {2} & {0.05} & {0.14} & {0.33} \ \end{array}[/tex]
Solving (a): Given x = 1; Find PMF(Y)
This implies that, we consider the dataset of the row where x = 1 i.e.
[tex]\begin{array}{cccc}{P(x,y)} & {y} & { } & { } &{x } & {0} & {1} & {2} & {1} & {0.08} & {0.20} & {0.06} \ \end{array}[/tex]
First, calculate P(x=1)
This implies that, we add up the rows where x = 1
So, we have:
[tex]P(x = 1) = 0.08 + 0.20 + 0.06[/tex]
[tex]P(x = 1) = 0.34[/tex]
The pmf of y is then calculated using:
[tex]PY|X_{(yi)}=P(Y=y_i|x)=\frac{P(Y=y_i\ and\ x)}{P(x)}[/tex]
When x = 1
[tex]P(x = 1) = 0.34[/tex]
So, we have:
[tex]P(Y=y_i|x)=\frac{P(Y=y_i\ and\ x)}{0.34}[/tex]
For i = 0 to 2, we have:
[tex]i = 0[/tex]
[tex]P(Y=y_0|x)=\frac{P(Y=0\ and\ x)}{0.34}[/tex]
[tex]P(Y=y_0|x)=\frac{0.08}{0.34}[/tex]
[tex]P(Y=y_0|x)=0.2353[/tex]
[tex]i = 1[/tex]
[tex]P(Y=y_1|x)=\frac{P(Y=1\ and\ x)}{0.34}[/tex]
[tex]P(Y=y_1|x)=\frac{0.20}{0.34}[/tex]
[tex]P(Y=y_1|x)=0.5882[/tex]
[tex]i = 2[/tex]
[tex]P(Y=y_2|x)=\frac{P(Y=2\ and\ x)}{0.34}[/tex]
[tex]P(Y=y_2|x)=\frac{0.06}{0.34}[/tex]
[tex]P(Y=y_2|x)=0.1765[/tex]
So, the PMF of y given that x = 1 is:
[tex]\begin{array}{cccc}{{y} & {0} & {1} & {2} & {P(y|1)} & {0.2353} & {0.5882} & {0.1765} \ \end{array}[/tex]
Solving (b): Given x = 2; Find PMF(Y)
This implies that, we consider the dataset of the row where x = 2 i.e.
[tex]\begin{array}{cccc}{P(x,y)} & {y} & { } & { } &{x } & {0} & {1} & {2} & {2} & {0.05} & {0.14} & {0.33} \ \end{array}[/tex]
First, calculate P(x=2)
This implies that, we add up the rows where x = 2
So, we have:
[tex]P(x =2) = 0.05 + 0.14 + 0.33[/tex]
[tex]P(x =2) = 0.52[/tex]
The pmf of y is then calculated using:
[tex]PY|X_{(yi)}=P(Y=y_i|x)=\frac{P(Y=y_i\ and\ x)}{P(x)}[/tex]
When x = 2
[tex]P(x =2) = 0.52[/tex]
So, we have:
[tex]P(Y=y_i|x)=\frac{P(Y=y_i\ and\ x)}{0.52}[/tex]
For i = 0 to 2, we have:
[tex]i = 0[/tex]
[tex]P(Y=y_0|x)=\frac{P(Y=y_0\ and\ x)}{0.52}[/tex]
[tex]P(Y=y_0|x)=\frac{0.05}{0.52}[/tex]
[tex]P(Y=y_0|x)=0.0962[/tex]
[tex]i = 1[/tex]
[tex]P(Y=y_1|x)=\frac{P(Y=y_1\ and\ x)}{0.52}[/tex]
[tex]P(Y=y_1|x)=\frac{0.14}{0.52}[/tex]
[tex]P(Y=y_1|x)=0.2692[/tex]
[tex]i = 2[/tex]
[tex]P(Y=y_2|x)=\frac{P(Y=y_2\ and\ x)}{0.52}[/tex]
[tex]P(Y=y_2|x)=\frac{0.33}{0.52}[/tex]
[tex]P(Y=y_2|x)=0.6346[/tex]
So, the PMF of y given that x = 2 is:
[tex]\begin{array}{cccc}{{y} & {0} & {1} & {2} & {P(y|2)} & {0.0962} & {0.2692} & {0.6346} \ \end{array}[/tex]
Solving (c): [tex]P(Y \le 1 | X = 2)[/tex]
This means that, we consider the values of Y for which [tex]Y \le 1[/tex] is true
These values are 0 and 1
So, we have:
[tex]\begin{array}{ccc}{{y} & {0} & {1} & {P(y|2)} & {0.0962} & {0.2692} \ \end{array}[/tex]
Hence;
[tex]P(Y \le 1 | X = 2) = 0.0962 + 0.2692[/tex]
[tex]P(Y \le 1 | X = 2) = 0.3654[/tex]