Answer :
Answer:
The area is approximately [tex]588cm^2[/tex]
Step-by-step explanation:
Given
See attachment for figure
Required
The area of the shaded region
The shaded region is as follows:
- A major segment
- A triangle
First, calculate the area of the major segment using:
[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]
Where
[tex]r = 14[/tex]
[tex]\theta = 360 - 70 =290[/tex]
So, we have:
[tex]A_1 = \frac{290}{360} * 3.14 * 14^2[/tex]
[tex]A_1 = 495.7711[/tex]
Next, the area of the triangle using:
[tex]Area = \frac{1}{2}ab \sin C[/tex]
Where
[tex]a=b=r = 14[/tex]
[tex]C = 70^\circ[/tex]
So, we have:
[tex]A_2 = \frac{1}{2} * 14 * 14 * sin(70)[/tex]
[tex]A_2 = 92.0899[/tex]
So, the area of the shaded region is:
[tex]Area = A_1 + A_2[/tex]
[tex]Area = 495.7711 + 92.0899[/tex]
[tex]Area = 587.8610[/tex]
[tex]Area \approx 588[/tex]
