Answer :
Answer:
10m
Explanation:
let's take the acceleration as a constant throughout the complete motion...
therefore first let's find the acceleration
[tex]s = ut + \frac{1}{2} a {t}^{2} \\ 2 = \frac{1}{2} a {1}^{2} \\ a = 4m {s}^{ - 2} [/tex]
then we have to find v1
apply V = u + at
v = 4×1
= 4ms^-1
lets find the distance travel by the object DURING THE TIME INTERVAL 1-2
[tex]s = ut + \frac{1}{2} a {t}^{2} \\ s = 4 \times 1 + \frac{1}{2} \times 4 \times {1}^{2} \\ s= 6m [/tex]
then let's find the V2
[tex] {v}^{2} = {u}^{2} + 2as \\ {v}^{2} = {4 }^{2} + 2 \times 4 \times 6 \\ {v}^{2} = 64 \\ v = \sqrt{64} = 8m {s}^{ - 1} [/tex]
then let's find the distance travel by the object during time interval 2s to 3s
[tex]s = ut + \frac{1}{2} a {t}^{2} \\ s = 8 \times 1 + \frac{1}{2} \times 4 \times {1}^{2} \\ s = 10m [/tex]
